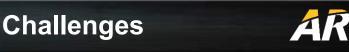
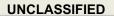


Research Area 1: Distributed Intelligence Nick Roy, MIT & Ethan Stump, ARL

UNCLASSIFIED

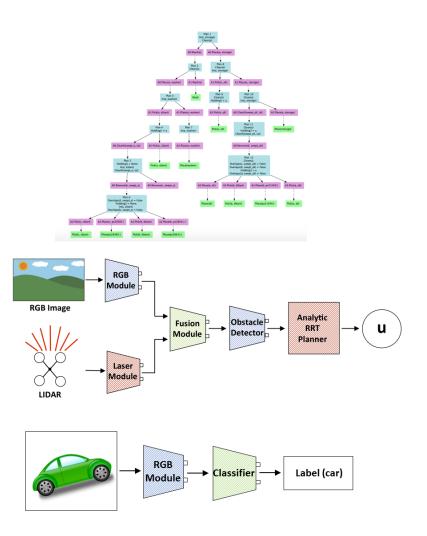
Force Multiplication


- High op-tempo
- Complex, dynamic missions with adversaries
- Distributed agents with heterogeneous sensors
- Large scale needs abstractions
- Intermittent networks with limited bandwidth


Force Protection

- High op-tempo
- Unstructured, dynamic environments
 with human teammates
- Novel concepts that must be acquired and stored
- Tactical scale demands details
- Information must be human interpretable

How do diverse, embodied agents collectively sense, infer, reason, and plan to support these broad needs?


- Contextual Abstractions
 - Representations of the world that can be flexibly composed and recomposed efficiently and robustly.
- The Swarm as the Tactical Cloud
 - Ability to share information, representation and capabilities as the problem demands and the data allows
- Perception-Action-Communication Loops for Robust, Responsive and Resilient Swarms
 - Models of sensing, action and learning that are cognizant of constraints in communication resources.

RA1.A Abstractions

 Conventional (deployed) view assumes fixed sensing and planning hierarchy, with fixed inference, planning and learning loops at each level

U.S. ARMY RDECOM®

- Task planner often hand-coded
- State-of-the-art view acknowledges that inference and planning must reason across levels of abstraction
 - Still fixed hierarchy
- ARCHES view is that abstraction and hierarchy are dynamic and determined by the task at hand.
 - Agents should decide in real-time to modify the world model and the hierarchical model of abstraction

ARI

RDECOM RA1.A - Technical Challenges

Hierarchical & Composable Models & Contextual Abstractions

• How to infer or learn the structure of these models in the context of the specific environment, mission and distributed resources.

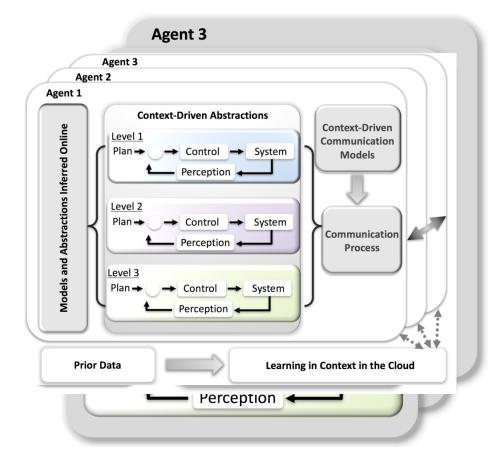
U.S.ARMY

- RA1.A1 Contextual Perceptual Representations (Atanasov, Carlone, How, Rogers, Wigness)
- Year 1 Goal: Multi-modal (metric/semantic/temporal) environment representations
- How to learn with data-efficiency by combining learned components and by combining learned components with conventional models.
 - RA1.A2 Hierarchical, Composable and Adaptable learning (Levine, Ribeiro, Koppel)
 - Year 1 Goal: hybrid model-based + model-free reinforcement learning for visionbased robotic manipulation and small-scale ground robot
- How to plan in structured models while preserving completeness and optimality
 - RA1.A3 Hierarchical & Composable Planning for Sufficient Optimality (Karaman, Roy, Tsiotras, Ribeiro, Stump, Hayes)
 - Near term Goal: Hierarchical and composable representations that enable planning with performance and completeness guarantees.

RA1.B – Technical Challenges ARL

Complex, Collaborative, Distributed Inference & Decision-Making

- How and when to share and fuse data, in the context of the specific environment, mission and distributed resources?
 - RA1.B1 Distributed Learning, Inference & Planning (How, Atanasov, Carlone, Christensen, Rogers, Koppel)
 - Near term Goal: Demonstrate resource-aware inter-robot loop closure detection
- How to learn across a team when agents do not have identical representations?
 - RA1.B2 Collaborative Learning in Multi-Agent Networks (Daniilidis, Atanasov, Levine, Sadler, Wigness
 - Year 1 Goal: Demonstration for functionally relevant metric learning in simulated environment
- Which abstractions should be used to share information with human partners?
 - RA1.B3 Interaction with Human Teammates (Shah, Christensen, Chernova, Loianno, Roy, Bassett, Rogers, Fink, Reardon, Warnell, Cummings, Holder)
 - Year 1 Goal: Human-interpretable induction of dynamic system behavior



 Conventional (deployed) view assumes fixed models and little-tono interaction between agents

U.S.ARM

U.S. ARMY RDECOM®

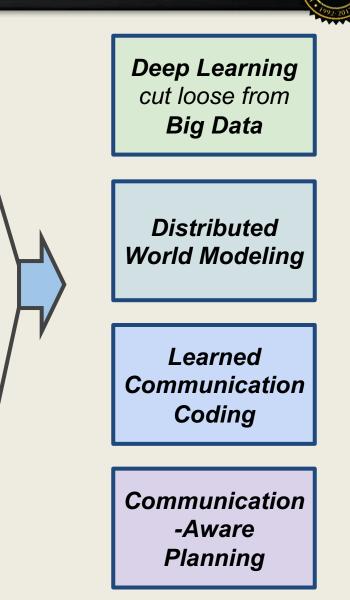
- State-of-the-art view acknowledges a priori training data used to build models, with fixed (or maximal) communication
- ARCHES view is that adaptation and communication are part of the control loop.
 - Agents should decide in realtime to adapt (or not) to new data and to transmit/receive (or not) new data

ARI

Distributed Perception-Action-Communication Loops

RA1.C

- How to design these loops in the presence of finite communication and computational resources?
 - RA1.C1 Joint Resource Allocation in Perception-Action-Communication Loops (*Ribeiro, Pappas, Fink*)
 - Year 1 Goal: Design opportunistic communication and resource allocation policies for closing multiple PAC control loops
- How to use the PAC to adapt the perception system in the context of the specific environment, mission and distributed resources?
 - RA1.C2 Resource-Aware Perception-Action-Communication Loops (Tsiotras, Carlone, Roy, Conroy, Dasari, Stump)
 - Near-term Goal: Develop a framework for co-design of perception-actioncommunication (PAC) loops
- How to use learning to adapt the communication networks themselves?
 - RA1.C3 Adaptation and Learning in Wireless Autonomous System (Romberg, Ribeiro)
 - Year 1 Goal: Understand the effect of imperfect communication on the convergence properties of distributed optimization algorithms



New theories of representation

 How to decompose complex problems for efficient planning, inference and learning, to preserve guarantees of completeness, correctness and (bounded) optimality

U.S. ARMY RDECOM®

- How to represent complex problems in a humaninterpretable manner
- New theories of inference, perception and learning
 - How to learn with new (actually useful) bounds on data efficiency
 - How to act efficiently to acquire new concepts
- New theories of communication
 - How to incorporate communications (and especially limitations) as part of the action loop
 - How to learn new models of communication layers

