Cross-Disciplinary Experimentation

CDE
Lead: Vijay Kumar
Govt. Lead: Jonathan Fink
Cross-disciplinary experimentation serves to explore and discover interdependencies across research areas.

CDE Tasks

Norm-setting with respect to experiments in terms of how we can show research progress that affects real-world problems

Program Goals

- Autonomous robots
- Complex and large scale
- Rapid operational tempo
- Heterogeneous
- Indoor/outdoor
- Human teammates
- Force protection
- Force multiplication

CDE Tasks

Lower barrier for moving from individual task experiments to cross-disciplinary experiments

Support academic-government collaboration and eventual technology transition
The Nation’s Premier Laboratory for Land Forces

Cross-Disciplinary Experimentation (CDE)

CDE Tasks

CDE1: Plug-and-play interfaces for experimental platforms (Hsieh, Karaman, Roy, Sukhatme)

CDE2: Integration of wireless communication simulators (Ayanian, Hsieh, Taylor, Romberg)

CDE3: Develop common test environments and cases (Christensen, Kumar, Chernova)

CDE4: Mobile autonomous networks (Loianno, Pappas, Ribeiro, Shah)

Simulation and testbed-based experiments

Build on open source and shared software development with continuous integration policies
Henrik I Christensen, Sonia Chernova & Vijay Kumar
UC San Diego, Ga Tech and Univ. of Pennsylvania
John Rogers & Jonathan Fink, ARL

CDE 3 - Develop common test environments and cases

Goals
• Define test scenarios for Force Protection and Multiplication
• Define test environments to explore test scenarios
• Define metrics for evaluation
Goals

- Common DCIST cross disciplinary research experimentation infrastructure
- Set up a framework for continuous integration (CI) of DCIST software development

Status

- Identifying and assessing baseline DCIST component technologies and capabilities (PIs: Sukhatme (USC), Hsieh (Penn), Roy (MIT), Fink (ARL))
- Identifying and developing a baseline human model using a pre-defined set of human-robot interactions (PIs: Hsieh (Penn), Karaman (MIT))
- Identifying and establishing preliminary set of human interfaces for DICST simulations from the baseline human model (PIs: Hsieh (Penn), Karaman (MIT))
Goals

- Develop suitable approaches to model, simulate, and validate a heterogeneous communication network in a common DCIST cross disciplinary research experimentation infrastructure.
- Develop an architecture that can scale to handle hundreds or thousands of interacting nodes.

Status

- Identifying an initial set of network technologies useful for DCIST template mission scenarios (PIs: Hsieh (UPenn), Ayanian (USC), Fink (ARL)).
- Performing a survey of existing robotic and network simulation packages and characterizing their capabilities (PI: Taylor (UPenn)).

Future Work

- Identify suitable analytical models that approximate signal propagation for the initial set of network technologies.
- Develop joint robotic and network simulation architecture that can be effectively scaled to handle tens, hundreds, and thousands of interacting nodes.

Candidate Experiments

- Perimeter surveillance task with simulated heterogeneous communication models for the initial set of network technologies.
Goals

- Co-design Perception-Action-Communication loops
- Heterogeneous multi-robots/multi-humans interaction
- Realize PAC-loop architecture from tasks RA1.C1, RA1.B3, RA1.C1 in experimental infrastructure

Preliminary Work

- Exploring Human/robots localization and exploration using **cameras** and **gaze data** from eye tracking glasses
 - Force **protection**
 - Support humans and robots communication
 - Investigating different interaction paradigms
- Scalable approach up to 20 robots and multiple humans in the loop
 - Tested 12 quadrotors without motion capture systems
 - Force **multiplication**
- Dynamic allocation of **perception** and **action** across platforms (without high bandwidth communication)

Candidate Experiments

- Single robot/human demo by October/November 2018 considering human/drone interaction using VR/Eye tracker device (possibly multiple drones)
CDE Tasks

CDE1: Plug-and-play interfaces for experimental platforms (Hsieh, Karaman, Roy, Sukhatme)

CDE2: Integration of wireless communication simulators (Ayanian, Hsieh, Taylor, Romberg)

CDE3: Develop common test environments and cases (Christensen, Kumar, Chernova)

CDE4: Mobile autonomous networks (Loianno, Pappas, Ribeiro, Shah)

Simulation and testbed-based experiments

Build on open source and shared software development with continuous integration policies
CDE 1: Plug-and-play interfaces for experimental platforms

- **Subtask 1(a) Assessment of baseline DCIST capabilities and best-practices**
- **Subtask 1(b) Human modeling**

Consortium PIs: M. Ani Hsieh, UPenn, Sertac Karaman, MIT, Nicholas Roy, MIT, Gaurav Sukhatme, USC

Objective:
- Facilitate collaboration, integration, and cross disciplinary experimentation in common environments and test scenarios
- Create the necessary software infrastructure for research experimentation for common DCIST platforms, environments, and scenarios.
- Build towards a universally available software interface supported by a collection of open-source simulation testbeds and open and possibly closed-source experimental testbeds.

Approach:
- Establish standard best practices for common DCIST test scenarios.
- Define standard plug-and-play interfaces for common environmental, dynamics, and communication models for various single robot, multi-robot, and robot swarm tasks.
- Develop a range of capabilities that will enable the integration of human agents in simulation and hardware experimentation.
- Set up a framework for continuous integration (CI) of DCIST software development
CDE 2: Integration of Wireless Communication Simulators

Principal Investigator Nora Ayanian, USC, M. Ani Hsieh, UPenn, Camillo J. Taylor, UPenn, Justin Romberg, GT

• **Subtask CDE.2 (a) Development of channel models**
• **Subtask CDE.2 (b) Design of wireless and robotic simulation architecture**

Goal:

• Simulating long-range communications – with attributes like latency, error rates, power usage and bandwidth – is challenging and complicated by the mobility and heterogeneity of our robots and the complexity of the operating environment.
• Focuses on overcoming the technological and scientific challenges necessary for high-fidelity simulation of DCIST scenarios with large teams of heterogeneous agents equipped with a heterogeneous communication network.

Approach:

• Survey the available robotic and network simulation packages to characterize their capabilities along a number of dimensions including: fidelity of physical simulation, fidelity of sensor simulation, number of agents supported, fidelity of the communication model and scalability.
• Develop an architecture that will find an appropriate tradeoff between the need for accurate network simulation and the need for effective physical simulation.
• Work on developing an architecture that could be effectively scaled to handle the hundreds or thousands of interacting nodes.
• Leverage existing open source infrastructure such as ROS 2.0 to provide researchers with familiar APIs on which to develop and test their distributed coordination algorithms.
CDE 3: Develop common test environments and cases
Principal Investigators: Henrik I Christensen, UC San Diego, Vijay Kumar, UPENN, Sonia Chernova, Georgia Tech, John G. Rogers, ARL

Objective:
• Develop scenarios to ensure that the 6.1 research has a clear value to Army operations.
• Ensure that the research is demonstrated in a context where it is self-evident that it has relevance to present and future concepts of operation.
• Define data-sets and metrics for evaluation of performance in the presence of failures to the swarm and how that impacts the overall team (human and swarm)

Approach:
• Formally define a set of missions that fully expose the research performed by the DCIST consortium, the links to ARL researchers, and the contributions to the objectives.
• Develop a library of common test environments and testing scenarios for experimental verification and validation of DCIST capabilities and establish metrics for evaluation of different components of the system.
• The testing scenarios will include comprehensive models of planned annual demonstrations and joint experiments with a view of facilitating experimental validation, evaluating research progress, verification of project milestones and encouraging collaborations within the Alliance.
CDE 4: Mobile Autonomous Networks

Principal Investigator: Giuseppe Loianno, UPenn, George Pappas, UPenn, Alejandro Ribeiro, UPenn, Julie Shah, MIT

Objective:
• Develop a team of autonomous aerial robots for experimental verification and validation of DCIST capabilities and establish metrics and testing scenarios for PAC loops co-design approaches.
• Test heterogeneous multi-robots/multi-humans systems.

Approach:
• Will design methodologies to let teams self organize ad-hoc mobile wireless networks to support mission accomplishment while not compromising the perception capabilities of the entire team.
• Support techniques developed in tasks RA1.C1, RA1.B3 considering an initial setup of 10 aerial robots.
• Complement tasks RA1.C1 considering safe actions and trajectories that are compatible with respect to the communication constraints.
• Build on the learning view of wireless systems design, which aims to learn optimal resource allocations.
• Complement RA1.B3 and RA2.A2 establishing a way to localize the entities with respect to each other. This allows the ability to locate robots and humans such to receive information in a common coherent reference system.
Backup
(some) ARL Experimental Resources

- Ground Robots
- Quadrotors
- Mesh radios
- Novel radios (e.g., miniature 40MHz)
- High Performance Computing
ARL Experimental Facilities

Adelphi, MD

Ft. Indiantown Gap, PA

Aberdeen, MD

Camp Lejeune, NC
ARL Experimental Facilities

Adelphi, MD

Ft. Indiantown Gap, PA

COMING SOON Graces Quarters